Skip to main content

Communications solutions and case studies

High density power allows for unobtrusive base station

Case study: 5G indoor small-cell base station

5G indoor small-cell base station

5G networks necessitated a higher density of antennas

5G networks necessitated a higher density of antennas

The demand for mobile data, video and music streaming has increased wireless network demand exponentially, and 5G networks are expected to provide the necessary increased network capacity. The higher bandwidth required of 5G connections limits the range of base stations, necessitating a higher density of antennas, especially in buildings where radio signals have limited penetration. The key goals for this indoor base station were:

  • Improve aesthetics and simplify installation by reducing system footprint, profile and weight
  • Antennas needed to be powered over PoE from existing building cabling, requiring isolation
  • Scalable design to accommodate future power needs

High-switching frequencies with high performance

High-switching frequencies with high performance

Size and weight objectives were met by using BCM bus converter modules and ZVS Buck regulators, both utilizing high switching frequencies for a very power dense solution. Further space savings were achieved as Vicor’s proprietary Sine-Amplitude Converter topology increased efficiency, reducing cooling requirements even at high ambient temperatures. Key benefits were:

  • Reduced footprint of just 6.4cm2 and profile of <7mm enabled by high- density converters
  • Operation at high ambient temperatures requires little cooling due to high efficiency topologies (>94%)
  • Scaling to meet future requirements straightforward as converters are easily paralleled

Vicor power modules provide high power density and high efficiency

Power delivery network: A half-chip BCM Bus Converter (K=1/4) measuring just 22 x 16.5 x 6.7mm was used to provide the isolated 12V rail. A ZVS Buck regulator provided the regulated 5V rail to the processor and a ZVS Buck-Boost regulator provided the precisely regulated 12V rail to drive the RF power amplifier stage. Both regulators measure a compact 14 x 10 x 2.6mm. To analyze this power chain, go to Vicor Whiteboard online tool.

Learn more about the modular approach power.

Power Delivery Network
buck-boost

ZVS buck-boost regulators

Input: 8 – 60V

Output: 10 – 54V

Power: Up to 150W continuous

Efficiency: Over 98%

10.5 x 14.5 x 3.05mm

PRM family page

ZVS buck regulators

Inputs: 12V (8 – 18V), 24V (8 – 42V), 48V (30 – 60V)

Output: 2.2 – 16V 

Current: Up to 22A

Peak efficiency: Up to 98%

As small as 10.0 x 10.0 x 2.56mm  

BCM

BCM bus converter modules

Input: 800 – 48V

Output: 2.4 – 55.0V

Current: Up to 150A

Efficiency: Up to 98%

As small as 22.0 x 16.5 x 6.7mm  

Resources

Contact Form

Get in touch with Vicor

Thank you for contacting us

You should receive a reply to your request within one business day.